Public Docs
【模型量化】深度学习模型量化 & 量化理论 & 各平台的量化过程 & 硬件加速
【TVM】TI关于TVM的使用测试与分析
【LLM&LVM】大模型开源工程思维导图
【北航卓越工程师】《汽车前沿技术导论:智能驾驶》讲义
【工具链】Yocto使用介绍——使用Yocto创建一个树莓派的系统镜像
【工具链】使用ssh+dialog指令设定服务器指定用户仅容器访问
【推理引擎】一篇关于模型推理的详细对比与学习
【推理引擎】关于TVM中的Schedule优化详解(On going)
【LLM微调】使用litgpt进行私有数据集模型微调的测试总结
【TVM】在TVM Relay中创建一个自定义操作符
【STT+LLM+TTS】如何使用语音转文字模型+大预言模型+语音生成模型完成一个类人的语音交互机器人
【RAG】 通过RAG构建垂直领域的LLM Agent的方法探索
【RAG】GraphRAG精读与测试(On going)
【AI Agent】MetaGPT精读与学习
【AI Base】Ilya Sutskever 27篇必读论文分享清单
【Nvidia】Jetson AGX Orin/ Jetson Orin nano 硬件测试调试内容(On going)
【BI/DI】LLM Using in BI Testing Scenario (On going)
【Nvidia】How to Activate a Camera on Nvidia Platform in Details
【RAS-PI】树莓派驱动开发
【行业咨询阅读】关注实时咨询和分析
【mobileye】2024 Driving AI
【mobileye】SDS_Safety_Architecture
【yolo】yolov8测试
【nvidia】Triton server实践
【alibaba】MNN(on updating)
【OpenAI】Triton(on updating)
【CAIS】关于Compound AI Systems的思考
【Nvidia】关于Cuda+Cudnn+TensorRT推理环境
【BEV】BEVDet在各个平台上的执行效率及优化(On Updating)
【Chip】AI在芯片设计和电路设计中的应用
【Chip】ChiPFormer
【Chip】关于布线的学习
【Chip】MaskPlace论文精读与工程复现优化
【gynasium】强化学习初体验
【Cadence】X AI
【transformer】MinGPT开源工程学习
【中间件】针对apollo 10.0中关于cyberRT性能优化的深度解读和思考
【Robotics】调研了解当前机器人开发者套件(on updating)
【Robotics】ROS CON China 2024 文档技术整理与感想总结(上2024.12.7,中2024.12.8,下场外产品)
【algorithm】关于模型、数据与标注规范的平衡问题
【nvidia】DLA的学习了解与使用
【nvidia】构建nvidia嵌入式平台的交叉编译环境(其他环境平台可借鉴)
文档发布于【Feng's Docs】
-
+
首页
【Nvidia】How to Activate a Camera on Nvidia Platform in Details
# 0. Pre There are very rich documents to help us to develop a driver on Nvidia platform. Further more, there are also camera driver development guide like `Jetson GMSL Camera Framework Guide nv.pdf`. [annexe 4] But if you do not have much experience on driver development, It could be really hard to know how to start the task. So maybe this blog could be helpful for you not only understand the architecture about how to do it but also gives a best prectice about active two camera ==imx390c(max9295a+GW5200+GSML2)== and == OX03C10+max96717F+GSML2== on ==Jetson Orin Nano 4G== with ==a CSI-2-GSML board==. ``` mindmap # hardware ## camera ### imx390C(with ISP GW5200 on camera) ### OX03C10+max96717F(without ISP on camera) ## Jetson Orin Nano 4G (Part 1. Nvidia Jetson Platform ) ## csi 2 gsml board (Part 2.) ## FPC ## GSML Line # Software ## Nvidia Platform Software(Part 3.) ### SDKManager ### Jetpack, L4t, Supported SDK ### Kernel Compile ## Understand the Architect of the driver development especially camera driver on Nvidia(Part 4.) ### Device Tree ### Driver ### Register Config & Activation File ### ISP(optinonal) ``` # 1. Nvidia Jetson Platform  * when you get an nvidia embedded platform, this file could help you to distinguish which type of platform that you are working on. * In the filename `/boot/dtb/kernel_tegra234-p3767-0004-p3768-0000-a0.dtb`, the terms p3767 and p3768 refer to specific `hardware platform` and `carrier board` configurations for NVIDIA Jetson devices. * `p3767`: This typically represents the module or the system-on-chip (SoC) variant. For example, it could refer to the Jetson Orin Nano or another variant in the Jetson Orin family. * `0004`: This represent the different parameter of the SoC. For example, 0004 (orin nano 4G), 0003 (orin nano 8G), 0000 (orin nx) * `p3768`: This generally represents the carrier board or baseboard to which the module is connected. It defines the specific layout and connectivity features that the module will interact with.  * AGX Orin 64GB / 32GB / Industrial: p3701 (for AGX Orin series modules) * Orin NX 16GB / 8GB: p3767 (for Orin NX series modules) * Orin Nano 8GB / 4GB: p3767 (for Orin Nano series modules) * AGX Xavier Industrial / 64GB / 32GB: p2888 (for AGX Xavier modules) * Xavier NX 16GB / 8GB: p3509 (for Xavier NX modules) * TX2 NX: p3489 (for TX2 NX module) * Jetson Nano: p3448 (for Jetson Nano module)  # 2. Architecture of the physical connections * csi1, csi2, cs3 * 22pin, 15pin, 30pin, 40pin * pin15     # 3. SDKManager, Jetpack SDK, L4T(Linux for Tegra), Toolchain, Supported SDK ## 3.1 SDKManager * SDK Manager is used to install Jetpack & Jetpack supported on the Hardware Platform (Devkit or clb256)   ``` bash sparkmind@sparkmind-S14-72:~$ docker images REPOSITORY TAG IMAGE ID CREATED SIZE sdkmanager 2.1.0.11698-Ubuntu_20.04 cf06d9276abf 3 weeks ago 966MB sdkmanager 2.1.0.11698-Ubuntu_18.04 b48827454275 3 weeks ago 908MB sdkmanager 2.1.0.11682-Ubuntu_22.04 45897d7a36d1 2 months ago 970MB # ~/.bashrc alias nv18='docker run -it --privileged --network=host --rm -v /home/sparkmind/Nvidia/:/home/nvidia/Downloads/nvidia/ -v /home/sparkmind/nvidia:/home/nvidia/nvidia sdkmanager:2.1.0.11698-Ubuntu_18.04 --cli' alias nv20='docker run -it --privileged --network=host --rm -v /home/sparkmind/Nvidia/:/home/nvidia/Downloads/nvidia/ -v /home/sparkmind/nvidia:/home/nvidia/nvidia sdkmanager:2.1.0.11698-Ubuntu_20.04 --cli' alias nv22='docker run -it --privileged --network=host --rm -v /home/sparkmind/Nvidia/:/home/nvidia/Downloads/nvidia/ -v /home/sparkmind/nvidia:/home/nvidia/nvidia sdkmanager:2.1.0.11682-Ubuntu_22.04 --cli' ``` `Each version of nvidia sdkmanager has its correspondant ubuntu version, but docker could be used no matter on which ubuntu.(Bug exists.) ` ## 3.2 Jetpack   ## 3.3 L4T  ## 3.4 Kernel Customization Follow the link below it will help you to customize the kernal. dtb and Image/.ko file. https://docs.nvidia.com/jetson/archives/r35.4.1/DeveloperGuide/text/SD/Kernel/KernelCustomization.html?highlight=nvbuild%20sh # 4. Camera Architecture Stack The picture below gives you whole picture of camera Architecture Stack. The main part of the camera driver development are: * Device Tree Create [sensor device tree](https://docs.nvidia.com/jetson/archives/r35.4.1/DeveloperGuide/text/SD/CameraDevelopment/SensorSoftwareDriverProgramming.html#device-tree) * Implement the custom camera driver with `Camera Core/Tegra Drivers` structure. * Verify the register Config with the activate Ser/Des file or the documents from the sensor Company. * Use V4l2 to test the result  * Config the Register of the Ser,Des,Sensor by I2C.     * Config the Device Tree  * Write the driver of the camera by the configuration of the Register  # Annexe * Jetpack Archive: https://developer.nvidia.com/embedded/jetpack-archive * Jetson Linux Archive: https://developer.nvidia.com/embedded/jetson-linux-archive * sdkmanager: https://developer.nvidia.com/sdk-manager 
dingfeng
2024年9月18日 11:28
383
0 条评论
转发文档
收藏文档
上一篇
下一篇
评论
手机扫码
复制链接
手机扫一扫转发分享
复制链接
Markdown文件
PDF文档
PDF文档(打印)
分享
链接
类型
密码
更新密码